A Novel 2-D Model Approach for the Prediction of Hourly Solar Radiation

نویسندگان

  • Fatih Onur Hocaoglu
  • Ömer Nezih Gerek
  • Mehmet Kurban
چکیده

In this work, a two-dimensional (2-D) representation of the hourly solar radiation data is proposed. The model enables accurate forecasting using image prediction methods. One year solar radiation data that is acquired and collected between August 1, 2005 and July 30, 2006 in Iki Eylul campus of Anadolu University, and a 2-D representation is formed to construct an image data. The data is in raster scan form, so the rows and columns of the image matrix indicate days and hours, respectively. To test the forecasting efficiency of the model, first 1-D and 2-D optimal 3-tap linear filters are calculated and applied. Then, the forecasting is tested through three input one output feed−forward neural networks (NN). One year data is used for training, and 2 month(from August 1,2006 to September 30,2006) for testing. Optimal linear filters and NN models are compared in the sense of root mean square error (RMSE). It is observed that the 2-D model has advantages over the 1D representation. Furthermore, the NN model accurately converges to forecasting errors smaller than the linear prediction filter results.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hourly solar radiation forecasting using optimal coefficient 2-D linear filters and feed-forward neural networks

In this work, the hourly solar radiation data collected during the period August 1, 2005–July 30, 2006 from the solar observation station in Iki Eylul campus area of Eskisehir region are studied. A two-dimensional (2-D) representation model of the hourly solar radiation data is proposed. The model provides a unique and compact visualization of the data for inspection, and enables accurate forec...

متن کامل

A Novel Intelligent Water Drops Optimization Approach for Estimating Global Solar Radiation

Normal 0 false false false EN-US X-NONE AR-SA MicrosoftInternetExplorer4 Measurement of solar radiance demands expensive devices to be used. Alternatively, estimator models are used instead. In this paper, a new method based on the empirical equations is introduced to estimate the monthly average daily global solar radiation on a horizontal surface. The proposed method uses Intelligent Water ...

متن کامل

Prediction of solar ultraviolet intensity by using Fuzzy Logic in the north-west of Iran

Introduction: Solar energy is one of the free sources, clean and environmentally friendly energy. Sun is the most important source of natural ultraviolet radiation that has a major role in the life of living beings. Industrial and medical applications of ultraviolet radiation have been clearly proven, like the production of vitamin D or treatment of many diseases, and also har...

متن کامل

Global Solar Radiation Prediction for Makurdi, Nigeria Using Feed Forward Backward Propagation Neural Network

The optimum design of solar energy systems strongly depends on the accuracy of  solar radiation data. However, the availability of accurate solar radiation data is undermined by the high cost of measuring equipment or non-functional ones. This study developed a feed-forward backpropagation artificial neural network model for prediction of global solar radiation in Makurdi, Nigeria (7.7322  N lo...

متن کامل

Solar Radiation Forecasting Model

The prediction of hourly solar radiation data has important consequences in many solar applications (Markvart, Fragaki & Ross, 2006). Such data can be regarded as a time series and its prediction depends on accurate modeling of the stochastic process. The computation of the conditional expectation, which is in general non-linear, requires the knowledge of the high order distribution of the samp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007